HONEE: High-Order Navier-stokes Equation Evaluator

HONEE (High-Order Navier-stokes Equation Evaluator, pronounced “honey”) is a fluids mechanics library based on libCEED and PETSc with support for efficient high-order elements and CUDA, ROCm, and Intel GPUs.

HONEE uses continuous-Galerkin stabilized finite element methods, namely SUPG, with a focus on scale-resolving simulations. Effort is made to maintain flexibility in state variable choice, boundary conditions, time integration scheme (both implicit and explicit), and other solver choices. High-order finite elements are implemented in an analytic matrix-free fashion to maximize performance on GPU hardware, while matrix assembly may also be used if desired.

Indices and tables

[sod]

Sod shock tube. https://en.wikipedia.org/wiki/Sod_shock_tube. Accessed: 01-30-2022.

[BJ16]

Jonathan R. Bull and Antony Jameson. Explicit filtering and exact reconstruction of the sub-filter stresses in large eddy simulation. Journal of Computational Physics, 306:117–136, 2016. doi:10.1016/j.jcp.2015.11.037.

[Col23]

Tim Colonius. Chapter 8 - boundary conditions for turbulence simulation. In Robert D. Moser, editor, Numerical Methods in Turbulence Simulation, Numerical Methods in Turbulence, pages 319–357. Academic Press, 2023. doi:10.1016/B978-0-32-391144-3.00014-0.

[Ger86]

M. Germano. Differential filters for the large eddy numerical simulation of turbulent flows. The Physics of Fluids, 29(6):1755–1757, 1986. doi:10.1063/1.865649.

[HST10]

Thomas J R Hughes, Guglielmo Scovazzi, and Tayfun E Tezduyar. Stabilized methods for compressible flows. Journal of Scientific Computing, 43:343–368, 2010. doi:10.1007/s10915-008-9233-5.

[JCWS99]

Kenneth E. Jansen, S. Scott Collis, Christian Whiting, and Farzin Shakib. A better consistency for low-order stabilized finite element methods. Computer Methods in Applied Mechanics and Engineering, 174(1-2):153–170, May 1999. doi:10.1016/s0045-7825(98)00284-9.

[MDGP+14]

Gianmarco Mengaldo, Daniele De Grazia, Joaquim Peiro, Antony Farrington, Freddie Witherden, Peter Vincent, and Spencer Sherwin. A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics. In AIAA Aviation 2014. Atlanta, June 2014. AIAA. doi:10.2514/6.2014-2923.

[PMK92]

TC Papanastasiou, N Malamataris, and Ellwood K. A new outflow boundary condition. International Journal for Numerical Methods in Fluids, 14:587–608, March 1992. doi:10.1002/fld.1650140506.

[Pop00]

Stephen B Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 9780521598866.

[PJE22a]

Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress modeling in the strain-rate eigenframe for large eddy simulation. Computer Methods in Applied Mechanics and Engineering, September 2022. doi:10.1016/j.cma.2022.115457.

[PJE22b]

Aviral Prakash, Kenneth E. Jansen, and John A. Evans. Invariant data-driven subgrid stress modeling on anisotropic grids for large eddy simulation. 2022. arXiv:arXiv:2212.00332.

[SHJ91]

Farzin Shakib, Thomas JR Hughes, and Zdeněk Johan. A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 89(1-3):141–219, 1991. doi:10.1016/0045-7825(91)90041-4.

[SSST14]

Michael L. Shur, Philippe R. Spalart, Michael K. Strelets, and Andrey K. Travin. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow, Turbulence and Combustion, 93(1):63–92, 2014. doi:10.1007/s10494-014-9534-8.

[SWW+93]

Jerry M Straka, Robert B Wilhelmson, Louis J Wicker, John R Anderson, and Kelvin K Droegemeier. Numerical solutions of a non-linear density current: a benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17(1):1–22, 1993. doi:10.1002/fld.1650170103.

[TS07]

Tayfun E Tezduyar and Masayoshi Senga. SUPG finite element computation of inviscid supersonic flows with $yz\beta $ shock capturing. Computers and Fluids, 36(1):147–159, 2007. doi:10.1016/j.compfluid.2005.07.009.

[Tor09]

Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Heidelberg, 2009. ISBN 978-3-540-49834-6.

[VD56]

E. R. Van Driest. On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11):1007–1011, November 1956. doi:10.2514/8.3713.

[Whi99]

Christian H Whiting. Stabilized Finite Element Methods for Fluid Dynamics Using a Hierarchical Basis. PhD thesis, Rennselear Polytechnic Institute, Troy, NY, 1999.

[WJD03]

Christian H Whiting, Kenneth E Jansen, and Saikat Dey. Hierarchical basis for stabilized finite element methods for compressible flows. Computer Methods in Applied Mechanics and Engineering, 192(47-48):5167–5185, 2003. doi:10.1016/j.cma.2003.07.011.

[ZZS11]

Rui Zhang, Mengping Zhang, and Chi-Wang Shu. On the order of accuracy and numerical performance of two classes of finite volume weno schemes. Communications in Computational Physics, 9(3):807–827, 2011. doi:10.4208/cicp.291109.080410s.